NEW METHODS IN THE THECRY OF RADIATIVE TRANSPORT.
IT. ANISOTROPIC SCATTERING
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The propagation of radiation in an anisotropically scattering layer is consider-
‘ed using the method developed in the first paper of the current series [1].

The solution of problems involving the propagation of radiation in an anisotropically
scattering medium usually relies on expansions of the intensity and scattering indicatrix of
the radiation by an elementary volume of the medium in series of Legendre polynomials [2, 3].
The expansion coefficients for the intensity of diffusely reflected radiation are given by
functions of the Ambartsumyan type, defined by a system of integral equations. The complex-
ity of this solution means that one must resort to studying the simplest cases of anisotropic
scattering. For example, in the monograph [2], the general solution of the radiative trans-
port equation in a semiinfinite medium was obtained for a linear anisotropy of the scattering
indicatrix

p () =1+ xcosy, (1)
and numerical results were given only for x = 1.

The numerical solution of the radiative transport equation with a nonspherical scatter-
ing indicatrix involves a large amount of execution time [4-7)]. Therefore, recent interest
has been shown in the development of approximate ways of taking into account the effect of
anisotropic scattering [6-8]. TFor example, a method of treating anisotropic scattering was
discussed in {8] for the transport approximation to a radiating two-phase medium. :

When the radiation propagates in a medium with a nonuniform distribution of sources, the
method discussed in [1] is used.

Then the solution for the case of an infinite medium reduces to determining the multiple
scattering function
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From the quantity f£(t,, u) we can easily find the intensity of diffusely reflected radiation:
10, —p) = A(1+ 8170, —p), A=F0, —w/r" (0, —p). (5)
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TABLE 1. Values of the Function R(u, u)
2=0,5 3=0.7 2=0,9
# ) 121 @ lolmlo|] o (21 @)
0,2 1,15 1,21 1,19 1,30 (1,351 1,34 1,54 1,63 1,60
0,4 1,18 1,21 1,18 1,39 11,47 ) 1,44 1,89 2,03 1,98
0,6 0,98 1,06 1,05 1,32 1,43 | 1,40 2,09 2,25 2,21
0,8 0,77 0,87 0,81 1,16 11,27 | 1,23 2,16 2,43 2,31
1,0 0,44 0,49 Q, 45 0,89 1{ 0,99 | 0,92 2,44 2,44 2,27
It is known that [2]
1”) (0, - M) — p (— U, HO) IJ‘()I()‘ . (6)
: 4 (- py)

We note that the use of a correction for multiple scattering in the isotropic approximation
[1] leads to a positive result for a scattering indicatrix of the type (1). We compare, in
Table 1, the exact and approximate results for the coefficient of diffuse reflection p(u, u)
with the coefficient 8u/Ai:

8, .

R 0= —Fp@, Wap(—p 0+, 7

According to [1], the function G(t, u) in (2) can be written in the following form for a scat-
tering indicatrix of the type (1):

G, 1) = Go(t) =+ x (1 + o) Gy () + 5oy (). (8)
Here
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Then
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The relations (2), {(9), and (9a) show that the determination of the function f(ty, u} for the
case of anisotropic scattering reduces to the evaluation of the integrals:

I (z)~z{G () e2tdt (m:O 1, 2, 3). : (11)
Indeed,
[0 —metin S =gy () el — 0 ) ()
J y» B oy \ B (12)
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We evaluate the integrals (11):
Jo(2) = 25 g, ] ({Sln§+z+zuoln R RN (13)
B -+ ziy B 0 /
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TABLE 2. Dependence of the Coefficient of Diffuse
Reflection p{u, uy) on the Anisotropy Parameter x
(o = n = 1.0)
Y
X
0,4 0,5 6,6 0,7 | 0.8 ] 0.9 0,05 0,99
-1 0,117 0,155 0,201 0,260 |0,342]0,4780,608|0,856
0 0,070 0,098 0,133 0,182 10,254}0,38410,51510,780
1 0,016 0,028 0,048 0,080 |0,152/0,255]0,3870,676
TABLE 3. Values of the Function A(uw, u,, x/8(u, ng»
x = 0) for y, = 0.9
x
" —r | o | v | = Jes | 0 [ =1 Jos | o
=04 A=0,9 A0, 89
0,1 1,02 0,97 0,9310,931,04]1,09}0,8 1,071,186
0,2 0,89 1,05 1,010,831 1,11 11,24 10,80 1,14] 1,31
0,4 0,71 1,18 1,41 10,71 11,231 1,680,609 1,261 1,67
0,6 0,60 1,33 1,9210,6211,38)2,1610,61 1 1,41]2,30
g.8 0,51 1,50 3,0210,651 1,563,441 0,64 11,601 3,7¢
1.0 0,49 1,72 8,01 10,50 1,80:9,39 0,49 1,8]10,2
(13)
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Calculation of the function R(u, u) according to (2), (12), and (13) demonstrates the
better accuracy of these relations in comparison with the approximate expression (7) (see
Table 1). These relations can be used to study the coefficient of diffuse reflection p(u, ug)
and the effect of the multiple scattering function for different values of the scattering an-
isotropy parameter x.
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In [1] the case x = 0 (isotropic scattering) was considered in detail and the high accur-
acy (£27) of the method was demonstrated. For —1 £ x £ 1, and for small values of u, and W,
the nature of the scattering indicatrix does not affect (to within an error of 0.5%) the mag-
nitude of the coefficient of diffuse reflection p(y, uy). As p, and yu increase, the quantity
p(u, u,) begins to depend strongly on x (for A << 0.9). For a strongly scattering medium, Fig.
1 shows that the dependence of the coefficient of diffuse reflection p{u, p,) on the angle of
observation becomes quite different for the two cases u;, = 1 and u, = 0.6. Table 2 shows the
results of the calculations for p(u, u,) for the example p, = u = 1.0. In Fig. 1 we also
show the angular distribution of the coefficient of reflection p(u, p,) for x = -1, 0, +1.
The data show that it is necessary to take into account the anisotropy of the scattering in
the calculations of p(u, ug). The degree of anisotropy even more strongly affects the mul-
tiple scattering function. This is confirmed by the data of Table 3 (the values of the quan-
tity A(u, ug, X = 0) are presented in [1]. .

In spite of the sharp difference between the values of A for different A (e.g., when
Mo = 0.9, p = 1.0, and x = 1.0, we have Afj=¢., = 3.12 and A}j=¢.9s = 51.07), the nature of
the variation of the function A(w, uy, x)/A{u, ue, x = 0) on the angle of observation is
nearly identical for all values of X and strongly depends on the anisotropy parameter x.

NOTATION

I(t, p), radiation intensity at the point 1t and in the direction 6 = arc cos y; I(l)T,p,
intensity of singly scattered radiation; I,, intensity of radiation incident from outside at
angle 8, = arc cos ug; A = o/(x + o), probability of quantum survival; k, o, coefficients of

absorption and scattering of the medium; v=jbv%®dz , optical thickness of the layer; p(u,

u'), scattering indicatrix of radiation by an elementary volume of the medium; a, double-
hemisphere fraction of backward scattering; f£(t, u), multiple-scattering function; p(u, uy),
coefficient of diffuse reflection.
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